
Normalized Form
As you most probably know, any boolean expression can be expressed in either a disjunctive
normal form or a conjunctive normal form. In a disjunctive normal form, a boolean expression is
written as a disjunct (logical or) of one-or more sub-expressions where each of these sub-
expressions is written in a conjunctive normal form. Similarly, an expression written in a
conjunctive normal form is a conjunct (logical and) of sub-expressions each written in a
disjunctive normal form.

An AND/OR tree is a tree-like graphical-representation of boolean ex- pressions written as either
conjunctive- or disjunctive-normal form. Since the sub-expressions of a normalized form alternate
in being either disjunctive or conjunctive forms, you’d expect the sub-trees on an AND/OR tree to
alternate in being AND- or OR- trees depending on the sub-tree’s depth-level. The example
upwards illustrates this observation for the boolean expression (A (B C)) (D E) where the trees in
the 1st (top-most) and 3rd levels are AND-trees.
Write a program that evaluates a given and/or tree.

Input

Your program will be tested on one or more test cases. Each test case is specified on exactly one
line (which is no longer than 32,000 characters) of the form:
 (E1 E2 . . . En)
where n > 0 and Ei is either T for true, F for false, or a sub-expression using the same format.
The trees at the deepest level are AND-trees. The last test case is followed by a dummy line
made of ().

Output

For each test case, print the following line:
k. E
Where k is the test case number (starting at one,) and E is either true or false depending on the
value of the expression in that test case.

Example

Input:
((F(TF))(TF))
(TFT)

((TFT)T)
()

Output:
1. false
2. false
3. true

	Normalized Form
	Input
	Output
	Example

