Ada and Bloom

As you might already know, Ada the Ladybug is a farmer. She grows many beautiful flowers. Each of the flowers has something called "blooming value". As long as $\mathbf{A}_{\mathbf{i}}<\mathbf{A}_{\mathbf{i}} \oplus \mathbf{A}_{\mathbf{j}}<\mathbf{A}_{\mathbf{j}}$ (where \oplus stands for binary XOR, and \mathbf{A} stands for "blooming value") is true for any pair of flowers (in any order), then those flowers-pair might bloom into a wonderful blossom, if they are replanted into same box (at most 2 flowers can be put into one box).

Ada wants to maximize the number of blossoms - can you find it?

Input

The first line of input containt $\mathbf{1} \leq \mathbf{T} \leq 500$ test-cases.
The first line of each test-case contains $\mathbf{N} \mathbf{1 \leq N} \leq 5000$

The next line contains \mathbf{N} integers $\mathbf{0}<\mathbf{A}_{\mathbf{i}} \leq \mathbf{1 0}^{\mathbf{1 8}}$, the blooming value of flower.

NOTE: The number of test-cases varies depending on size of array (the longest array won't be a single file more than once).

Output

For each test-cases, print the maximal number of blossoms Ada can achieve.

Example Input 1

6
7
85484911
6
99121246
3
774
4
10691
8
11412312110
4
12252

Example Output 1

All possible pairs 1

Test-case 1:
Test-case 2 :
$4<8<12$
$4<8<12$
$6<10<12$
$6<10<12$
Test-case 3:
Test-case 4:
$1<8<9$
Test-case 5:
$1<2<3$
$1<10<11$
$1<2<3$
$1<10<11$
$2<8<10$
$2<9<11$
$3<9<10$
$3<8<11$
$4<8<12$
Test-case 6:
$5<9<12$

Example Input 2

1
20
1234567891011121314151617181920

Example Output 3

