Ada and Tomato

Ada the Ladybug grows tomatoes. She has a very long furrow full of them. At the day of harvest, she picks all tomatoes, sorts them by size, index them (from 1) and sell them for price of "size \times index". How much money will she make, if she sells all of them?

As the nature is very beautiful (and Ada is great mathematician), she found the pattern for sizes of tomatoes. The patern works in (hopefully well known) way: Let us have tomato of size $\mathbf{X}_{\mathbf{i}}$, then $\mathbf{X}_{\mathbf{i}+\mathbf{1}}$ will be counted as $\mathbf{X}_{\mathbf{i + 1}}=\mathbf{X}_{\mathbf{i}}{ }^{*} \mathbf{a}+\mathbf{b} \bmod \mathbf{M}$. \mathbf{M} (modulo) is equal to $\mathbf{1 0}^{9}+\mathbf{7}$ (1000000007).

Input

The first line contains $\mathbf{1 \leq T} \leq \mathbf{2 0 0}$, the number of test-cases.
Each test-case contains four numbers $\mathbf{N}, \mathbf{a}, \mathbf{b}, \mathbf{X}_{\mathbf{1}}$:
$1 \leq N \leq 2^{*} 10^{7}$, the number of tomatoes.
$0 \leq a, b, X_{1}<10^{9}+7$ - described above (X_{1} is the size of first tomato).
Sum of \mathbf{N} over all test-cases will not exceed $\mathbf{5}^{\boldsymbol{*}} \mathbf{1 0}^{\mathbf{7}}$.

Output

For each test-case output the sum of all prices modulo $\mathbf{1 0}^{\mathbf{9}+7}$.

Example Input

5
2231
3111
5121
4101
20567

Example Output

11
14
95
10
150690584

Sizes of tomatoes for each input

15

