Amazing Factor Sequence (medium)

Warning

Here is a harder version of Amazing Factor Sequence.
To make things clear, you'll need a $O\left(n^{\wedge} 0.5\right)$ method to solve this problem. You'll need to be careful with container of C-like language, and/or you'll need to find some little optimizations with slower language.

The factor sequence

We define our factor sequence with:
$a[0]=a[1]=0$, and
for $n>1, a[n]=a[n-1]+\operatorname{sum}(\{x \mid x<n$ and $n \% x=0\})$.

Input

First line of input contains an integer \boldsymbol{T}, the number of test cases.
Each of the next \boldsymbol{T} lines contains a single integer \boldsymbol{n}.

Output

For each test case, print $a[n]$ on a single line.

Example

Input:
3
3
4
5
Output:
2
5
6

Constraints

$0<\mathrm{T}<101$
$0<n<12148001999$
Numbers \boldsymbol{n} are uniform-randomly chosen. Nmax was carefully chosen ;-)
Time limit is $\times 2.5$ my python one (2.56s). (Edited 2017-02-11, after compiler changes)

