Anti Hash II

Given a base \mathbf{B} and a modulo \mathbf{M}, the polynomial hash of a string \mathbf{S} consisting of only lowercase letters is defined as below.

Let $\mathbf{S}=\mathbf{S}_{\mathbf{0}} \mathbf{S}_{1} \ldots \mathbf{S}_{\mathbf{N}-1}$ be a string of length \mathbf{N} containing only the lowercase letters (a-z).
$\operatorname{Hash}(\mathbf{S})=\Sigma \mathbf{B}^{\mathrm{Ni}-1 \mathbf{1} *} \mathbf{D}\left(\mathrm{~S}_{\mathrm{i}}\right) \% \mathrm{M}$
$\mathbf{D}(\mathbf{S})=$ Lexicographical position of character \mathbf{S} among the letters $\mathbf{a}-\mathbf{z}$, indexed from $\mathbf{0 .} \mathbf{D}(\mathbf{a})=\mathbf{0}$, $D(b)=1, \ldots, D(z)=25$.

In other words, first the letters of the string are replaced by numbers (equivalent to their position). This is then considered to be a number in base \mathbf{B}, and the value of this number in base $\mathbf{1 0}$ modulo \mathbf{M} is called the polynomial hash of the string.

Calculating the hash of a string using the above method seems easy enough. What about the opposite? You are given a base B, a modulo M, a positive integer N, and a hash value \mathbf{H}. Calculate how many strings are there such that their hash is equal to \mathbf{H}, consisting of only lowercase letters and their length not exceeding \mathbf{N}. Since the answer can be rather huge, output it modulo $10^{9}+7$ (1000000007).

Input

The first line contains an integer \mathbf{T}, denoting the number of test cases. Each test case starts with four integers $\mathbf{B}, \mathbf{M}, \mathbf{N}, \mathbf{Q}$. The numbers $\mathbf{B}, \mathbf{M}, \mathbf{N}$ denotes the base, modulus and the maximum length of any string as stated above. The number \mathbf{Q} indicates the number of queries. Each of the next \mathbf{Q} lines contain a single integer, denoting \mathbf{H}, the required hash value.

Constraints

- $1 \leq \mathrm{T} \leq 150$
- $26 \leq \mathrm{B} \leq 30000$
- $1 \leq \mathrm{M}, \mathrm{N} \leq 30000$
- $1 \leq Q \leq 300$
- $0 \leq \mathrm{H}<\mathrm{M}$
- For 95% of the test cases, $\mathbf{B}, \mathrm{M}, \mathrm{N} \leq 300$

Output

For each case, first output a line of the format Case \mathbf{X} :, where \mathbf{X} is the case number, starting from 1. And then, for each query, output the number of different strings with the given hash value modulo $10^{9}+7(1000000007)$ in a single line.

Print a blank line after every test case.

Sample Input

3
269723
0
1
96
1471471473
0
10
100
1001101201
35

Sample Output

Case 1:
8
8
6
Case 2:
944164777
944164777
0
Case 3:
110169522

Challenge

You might also enjoy:
Anti Hash
The Revenge Of Anti Hash

