A XOR Problem

Let us suppose we have a " N " bit integer X . We call an integer X ' as neighbor- X , if X ' can be obtained by shuffling the bits of integer X.

For example If $X=6$ and $N=5$, then X will be represented as $X=(00110)_{2}$, So all the 5 bit integers that have exactly two 1 s in their binary representation are called neighbor-X. For example $(00011)_{2},(01001)_{2},(10100)_{2}, \ldots$ all of these are neighbor-X.

Now you are given two N bit integers " X " and " Y ", then you have to find the maximum possible value of (X^{\prime} xor Y^{\prime}) where X^{\prime} is neighbor- X.
xor operator takes two bit strings and performs XOR operation between them. For example:
$(10010)_{2} \operatorname{xor}(01011)_{2}=(11001)_{2}$

Input

The first line of the input will contain an integer "T", the number of test cases. Each of the next " T " lines will contain three integers " N ", " X " and " Y ", N is the number of bits in integers X and Y.

Output

For each test case you have to print the maximum possible value of (X^{\prime} xor Y^{\prime}) in a separate line.

Constraints

$1<=T<=50$
$1<=\mathrm{N}<=30$
$0<=X, Y<2^{\wedge} N$

Example

Input:
3
354
501
437
Output:
7
16
14

Explanation

In the first case $X=5=(101)_{2}$ and $Y=4=(100)_{2}$, So we can have $X^{\prime}=(101)_{2}$ and $Y^{\prime}=(010)_{2}, X^{\prime}$ xor $\mathrm{Y}^{\prime}=(111)_{2}=7$

In the second case $X=0=(00000)_{2}$ and $Y=1=(00001)_{2}$, So we can have $X^{\prime}=(00000)_{2}$ and Y^{\prime} $=(10000)_{2}, \mathrm{X}^{\prime} \operatorname{xor} \mathrm{Y}^{\prime}=(10000)_{2}=16$

In the third case $X=3=(0011)_{2}$ and $Y=7=(0111)_{2}$, So we can have $X^{\prime}=(0011)_{2}$ and $Y^{\prime}=$ $(1101)_{2}, \mathrm{X}^{\prime} \operatorname{xor} \mathrm{Y}^{\prime}=(1110)_{2}=14$

