Alias

Alias is an assumed or additional name that constitutes a distinctive designation of a person. Consider a set of n persons and assume that each person has k distinct aliases. A person is identified using any one of its k aliases. The $\mathrm{nk}(=\mathrm{n} \times \mathrm{k}$) distinct aliases are identified using integers $1,2, \ldots n k$. Integers $1,2, \ldots, n$ represent the first aliases of all n persons in an arbitrary order. In general, integers $(j-1) \times n+1,(j-1) \times n+2, \ldots,(j-1) \times n+n$ represent the j th alias of all n persons in an arbitrary order, for $\mathrm{j}=1,2, \ldots, \mathrm{k}$. Persons in the set are totally ordered with respect to a quality characteristic Q associated with each person. Let $Q(r)$ be the value of Q for a person identified by one of its alias r.

Given a sufficient number, say m, of inequalities of the type: $Q(r)>Q(s)$, you are required to write a program to sort all persons in descending order and recognize all aliases of each person in the set.

As a simple illustration consider distinct total marks scored by three students in an examination. Each student is identified by any one of three distinct aliases in the Name: \{first-name middlename last-name\}. Let integers 1, 2, 3 represent the first names, 4, 5, 6 represent the middle names and 7, 8,9 represent the last names in an arbitrary order. Let $Q(r)$ be the total marks of student r, r being an alias. Given the following inequalities: $Q(6)>Q(1), Q(9)>Q(4), Q(5)>Q(8)$, $Q(2)>Q(9), Q(7)>Q(3), Q(9)>Q(3)$, one can conclude that the names of students appearing in descending order of total marks are $\{267\},\{159\}$ and $\{348\}$.

Input

The input may contain multiple test cases.
For each test case the first input line gives the parameters n, k and m.
The second line contains m inequalities represented by $2 \times m$ integers. An integer r occurring in an odd numbered position in the line and the integer soccurring in the next even numbered position, represent the inequality $Q(r)>Q(s)$.

Assume that nk is less than 100 and each integer in the second input line is of two digits, including a non-significant 0 when required.

The input terminates with a line containing 0 as input.

Output

For each test case print n lines giving k aliases of each person in a line; a line contains aliases in increasing order. Arrange persons in descending order of the quality characteristic Q. As in input, each integer in output is of two digits, including a non-significant 0 when required.

A blank line appears after the last output line of a test case.

Example

Sample Input

336

060109040508020907030903
242
03080205
0

Sample Output

020607
010509
030408

02030607
01040508

