Almost-isosceles Pythagorean triple (easy)

$(3,4,5)$ is the smallest almost-isosceles Pythagorean triple, as 4-3=1.
Let $S=\left\{(a, a+1, c) \mid a^{2}+(a+1)^{2}=c^{2}\right.$ with a and c positive integers $\}$.
One can prove that the set \mathbf{S} of almost-isosceles Pythagorean triples is infinite.
There is an obvious total order on this set.

Input

The first line of input contains an integer \boldsymbol{T}, the number of test cases.
On each of the next \boldsymbol{T} lines, your are given two integers \boldsymbol{n} and \boldsymbol{m}.

Output

For each test case, you have to find the \boldsymbol{n} th triple $(\mathbf{a}, \mathbf{a + 1}, \boldsymbol{c})$ in the ordered set \mathbf{S}, and print \boldsymbol{a} and \boldsymbol{c}. As the answer could not fit in a 64-bit container, simply output your answer modulo \boldsymbol{m}.

Example

Input:
3
110
2123
4289
Output:
35
2029
118118

Constraints

$0<\mathrm{T}<10^{\wedge} 4$
$0<\mathrm{n}<10^{\wedge} 18$
$1<m<10^{\wedge} 9$
For your information, my 500B-python3 code get AC in 1.61 s with 12ABB of memory print.
In Python2.7: (2.49s, 4.0MB), in Pythonz+psyeo (2.04s, 36MB).
My 1 kB C code ran in $(0.04 \mathrm{~s}, 1.6 \mathrm{MB})$, and time limit is $\times 125$ this one.
Have fun ;-)
(edit) With wisfaq observation, all my best timings are divided by exactly two!!!
(Edit 2017-02-11, new TL with new compiler. TL 1.11s, in the third (0.37s) my Python3 code ends.)

