Shopping Rush

A shop-keeper is trying to figure out how to arrange gifts in his shop for Christmas. He runs a peculiar shop such that each customer buys exactly two gifts at the shop (he could buy two of the same gifts too). He knows the probability that a customer might want gift i, is P_i.

He needs to arrange the gifts across several floors. Each floor should have exactly one gift. It takes $A^{*}(|x-y|)^{\wedge} 2+B^{*}(|x-y|)+C$ seconds to go from floor x to floor y.

Can you help him arrange the gifts across floors such that, the expected time spent by a shopper is minimized?

For the purpose of this problem assume that the first gift choice and the second gift choice are independent of each other. i.e., Choosing a first gift as i does not change his probability of choosing the second gift as j. It still remains $\mathrm{P}_{\mathrm{j}} \mathrm{j}$.

INPUT

The first line contains the number of test cases T. 2*T lines follow, 2 per test case. The first line contains 4 integers : N, A, B, C. The second line contains N integers in the range 1 to 100 . The ith integer represents the percentage probability P_i. All P_i's will sum to 100.

OUTPUT

Output T lines one for each test case. Each line contains the minimum expected travelling time for the corresponding test case. Output the answer as a reduced fraction as below.

CONSTRAINTS

$1<=$ T <= 100
$1<=\mathrm{N}<=20$
$0<=A, B, C<=10$

SAMPLE INPUT

4
3010
601030
1110
100
1113
100
4372
25252525

SAMPLE OUTPUT

3/5
$0 / 1$
3/1
73/4

