
Hop Do not Walk
Kermit The Frog is a classic video game with a simple control and objective but requires a good
deal of thinking. You control an animated frog that can walk and hop, in both forward and
backward directions. The frog stands in a space between an otherwise a contiguous line of tiles.
Each tile is painted black on one side, and white on the other. The frog can walk (forward, or
backward) over an adjacent tile (in front or behind him.) When the frog walks over a tile, the tile
slides to the space where the frog was standing. For example, in the adjacent figure, the frog has
two tiles behind him, and three in front. We’ll use the notation BWFBBW to refer to this situation
where F refers to the space (where the frog is standing,) B is a tile with its black face showing,
while W is a tile with its white face showing. The forward direction is from left to right. If the frog
were to walk forward, the resulting situation is BWBFBW. Similar behavior when the frog walks
backward, the tile behind the frog slides to where the frog was standing. The frog can also hop
over the tiles. The frog can hop over an adjacent tile landing on the tile next to it. For example, if
the frog was to hop backward, it would land on the first (left-most) tile, and the tile would jump to
the space where the frog was standing. In addition, the tile would flip sides. For example,
hopping backward in the figure would result in the situation: FWWBBW. We challenge you to
write a program to determine the minimum number of moves (walks or hops) to transform one tile
configuration into another.

Input

Your program will be tested on one or more test cases. Each test case is specified on a single
line that specifies string S representing the initial tile arrangement. S is a non-empty string and no
longer than 100 characters and is made of the letters ’B’, ’W’, and exactly one ’F’. The last line of
the input file has one or more ’-’ (minus) characters.

Output

For each test case, print the following line:
k. M
Where k is the test case number (starting at one,) and M is the minimum number of moves
needed
to transform the given arrangement to an arrangement that has no white tile(s) between any of
its black tiles . The frog can be anywhere. M is -1 if the problem cannot be solved in less than 10



moves.

Example

Input:
WWBBFBW
WWFBWBW
FWBBWBW
---

Output:
1. 0
2. 1
3. 2


	Hop Do not Walk
	Input
	Output
	Example


