Probability One

Number guessing is a popular game between elementary-school kids. Teachers encourage pupils to play the game as it enhances their arithmetic skills, logical thinking, and following-up simple procedures. We think that, most probably, you too will master in few minutes. Here's one example of how you too can play this game: Ask a friend to think of a number, let's call it no . Then:

1. Ask your friend to compute $\mathrm{n} 1=3 * \mathrm{n} 0$ and to tell you if n 1 is even or odd.
2. If n 1 is even, ask your friend to compute $\mathrm{n} 2=\mathrm{n} 1 / 2$. If, otherwise, n 1 was odd then let your friend compute $\mathrm{n} 2=(\mathrm{n} 1+1) / 2$.
3. Now ask your friend to calculate $\mathrm{n} 3=3 * \mathrm{n} 2$.
4. Ask your friend to tell tell you the result of $n 4=n 3 / 9$. ($n 4$ is the quotient of the division operation. In computer lingo, ' $/$ ' is the integer-division operator.)
5. Now you can simply reveal the original number by calculating $n 0=2 * n 4$ if $n 1$ was even, or $\mathrm{n} 0=2 * \mathrm{n} 4+1$ otherwise.

Here's an example that you can follow: If $\mathrm{n} 0=37$, then $\mathrm{n} 1=111$ which is odd. Now we can calculate $\mathrm{n} 2=56, \mathrm{n} 3=168$, and $\mathrm{n} 4=18$, which is what your friend will tell you. Doing the calculation $2 \times n 4+1=37$ reveals $n 0$.

Input

Your program will be tested on one or more test cases. Each test case is made of a single positive number ($0<\mathrm{nO}<1,000,000$).

The last line of the input file has a single zero (which is not part of the test cases.)

Output

For each test case, print the following line:
k. B Q

Where k is the test case number (starting at one,) B is either 'even' or 'odd' (without the quotes) depending on your friend's answer in step 1. Q is your friend's answer to step 4.

Example

Input:
37
38
0

Output:

1. odd 18
2. even 19
