Lets Be An Anagrammatist

Do you know what is an anagram? An anagram is a rearrangement of letters of one word to form another word. For example: one of the anagram of the word "CODEMASK" can be "DEMOCSAK". So, we can find different kinds of anagram of a word.

Now, you are given two array $S \& T$. You have to find a lexicographically smallest contiguous subsequence of S which is an anagram of array T .

Between two sequence $A \& B$, where length $(A)==$ length (B), A will be lexicographically smaller than B if we can find an index $i(1<=i<=\operatorname{length}(A))$ where $A[i]<B[i]$ and for all $j, A[j]=B[j]$ where $1<=j<i$.

Input:

The first line of the input is the number of the test cases Ts.
Each test case contains three lines. The first lines contains $N \& M, N$ is the length of array $S \& M$ is the length of array T.

Next line contains N integers of array S . Then another lines follows contains M integers describing array T .

Constraints:

$1<=$ Ts $<=20$
$1<=\mathrm{N}, \mathrm{M}<=200000$
$1<=S[i], T[i]<=200000$

Output:

First you need to print the case number. Then on the same line, you have to print the index (1 based) of the lexicographically smallest contiguous subsequence of S which is an anagram of T. If there is more than one answer, you need to print the smallest index. If you can't find any anagram of the T in S , just print 0 .

Sample Input:

Sample Output:

Case 1: 1

Case 2: 2

