Jumping Joey

Please read the problem statement carefully. Mathematical notations and bunch of examples are provided to make the statement friendly.
Once upon a time, there lived a frog named Joey. He has a long pond beside his house. There are lots of lily pads there, and he likes to jump from one pad to another. He hates to wet himself. Let's help Joey to cross the pond.
For the sake of simplicity, let's assume the pond to be a line segment of length \mathbf{L}. On this line segment there are \mathbf{n} lily pads. Let's enumerate the lily pads from left to right, that is the leftmost pad is number $\mathbf{1}$, second one from the left is number 2 and so on. At the beginning Joey is at the left end of the pond. Then he moves to the first pad, then to the second pad and so on. At the end he moves from the nth pad to the right end of the pond. There are two ways he can move, jump and swim. He can jump from one place to another if the distance between these two places is no more than \mathbf{D} unit. He can swim any times he wants. But as we already said he does not like to wet himself, so we need to minimize the number of times he swims for going from the left end to the right end.
However, the situation is not that simple. There are ropes between every two adjacent places. That is, there is rope between:
a. Left end and first pad
b. Last pad and right end
c. Between every two adjacent pads

Let,
a. Pibe the i'th pad ($\mathbf{1}<=\mathbf{i}<=\mathbf{n}$), \mathbf{P}_{0} be the left end and $\mathbf{P}_{\mathrm{n}+1}$ be the right end.
b. \mathbf{r}_{i} be the length of the rope $\mathbf{R i}_{\mathbf{i}}$ between $\mathbf{P}_{\mathbf{i}}$ and $\mathbf{P}_{\mathbf{i + 1}}($ for $\mathbf{0}<=\mathbf{i}<=\mathbf{n}$).
c. p_{i} be the position of $\mathbf{P}_{\mathbf{i}}(0<=\mathbf{i}<=\mathbf{n}+\mathbf{1})$. Obviously $p_{0}=\mathbf{0}, p_{n+1}=L$ and $p_{i}<p_{i+1}, r_{i}>=p_{i+1}-$ $\mathbf{p}_{\mathbf{i}}($ for $\mathbf{0}<=\mathbf{i}<=\mathbf{n})$.
When Joey is on $\mathbf{P}_{\mathbf{i}}$ he can pull $\mathbf{R i}_{\mathbf{i}}$ and then $\mathbf{P}_{\mathbf{i}+1}$ moves towards Joey. If the rope $\mathbf{R}_{\mathbf{i}+\mathbf{1}}$ is taut (the length of the rope is equal to the distance between the two pads that the rope is tied with) then this also affects $\mathbf{P}_{\mathbf{i}+2}$ and $\mathbf{P}_{\mathbf{i}+2}$ moves toward him as well (and so on). However, if a rope is not taut then it does not affect later pads. Also if the ropes are taut till $\mathbf{P}_{\mathrm{n}+1}$ then there is no movements of the pads at all (since the right end is fixed, that is $\mathbf{P}_{\mathrm{n}+1}$ is not movable). Let's try to clarify these statements by some examples.
Example 1: Let Joey is on $P_{2}, p_{2}=10, p_{3}=20, p_{4}=30, p_{5}=40$. Also $r_{2}=r_{3}=r_{4}=15$. Distance between $\mathbf{P}_{2}-\mathbf{P}_{3}, \mathbf{P}_{3}-\mathbf{P}_{4}$ and $\mathbf{P}_{4}-\mathbf{P}_{5}$ are 10, but the rope lengths are 15 . So none of the ropes are taut. Now if Joey pulls R2say by 1 unit, P_{3} will shift one unit towards P_{2} (new $p_{3}=19$). But this does not affect \mathbf{p}_{4}, because \mathbf{R}_{3} was not taut. Let Joey pulls rope $\mathbf{R}_{\mathbf{2}} 4$ more units (5 units in total). Then $\mathbf{p}_{\mathbf{3}}=$ $15, p_{4}=30, p_{5}=40$. Now R_{3} becomes taut since $P_{3}-P_{4}$ distance is now: $p_{4}-p_{3}=\mathbf{3 0 - 1 5 = 1 5}$ which is same as \mathbf{r}_{3}. So now, if Joey pulls one more unit, \mathbf{P}_{3} and \mathbf{P}_{4} moves together (\mathbf{P}_{5} does not, since \mathbf{R}_{4} is not taut). So the new positions would be: $p_{3}=14, p_{4}=29, p_{5}=40$.
Example 2: Let Joey is on \mathbf{P}_{0} and $\mathbf{n}=\mathbf{1}$. Position of the only lily pad $\mathbf{P}_{\mathbf{1}}$ is at $\mathbf{p}_{\mathbf{1}}=\mathbf{1 0}$. Let pond length $\mathbf{L}=20$. By definition $p_{0}=0$ and $p_{2}=L=20$. Also let's assume $r_{0}=10, r_{1}=11$. If Joey pulls R_{0} by one unit then: $\mathbf{p}_{1}=\mathbf{9}$. But now \mathbf{R}_{1} is taut. If he pulls \mathbf{R}_{0} more \mathbf{P}_{1} will not move, because the rope between \mathbf{P}_{1} and \mathbf{P}_{2} is taut and \mathbf{P}_{2} is the right end.
Given all the information, you have to figure out minimum number of times Joey has to wet himself in order to go from the left end to the right end. Please note Joey has to move from one place to the next place (he can't move backward), so he can't just wet himself once and swim from the left end to the right end.

Input

First line of the input will be a positive integer $\mathbf{T}(<=\mathbf{5 0})$, number of test cases. Test cases are separated by blank lines. Each case consists of 3 lines. First line contains two positive integers $n(<=1,000)$ and $D\left(<=\mathbf{1 0}^{\wedge} 9\right)$. Second line contains $\mathbf{n + 2}$ integers: $p_{0}, p_{1}, \ldots p_{n+1}$. Third line contains $\mathbf{n}+\mathbf{1}$ positive integers $\mathbf{r}_{\mathbf{0}}, \mathbf{r}_{1} \ldots \mathbf{r}_{\mathbf{n}}$. None of the \mathbf{p}_{i} and $\mathbf{r}_{\mathbf{i}}$ will be more than $\mathbf{1 0}^{\wedge} \mathbf{9}$. You may assume that all of these given values will satisfy all the constraints in the statement. Please note there may be one or more spaces/new lines separating adjacent lines/numbers.

Output

For each of the tests print the case number and the answer.

Example

Input:
5
110
01020
1010
110
01120
1110
110
01120
119
15
01020
2020
15
01020
2012
Output:
Case 1: 0
Case 2: 0
Case 3: 1
Case 4: 1
Case 5: 2

