Ascending Fibonacci Numbers

John is trying to learn the Fibonacci sequence. This is what he has learned so far. The first two terms of the sequence are $f(1)=0$ and $f(2)=1$. The next term $f(n)$ is then calculated by adding the previous two terms $f(n-1)$ and $f(n-2)$. Therefore,
$f(1)=0$
$f(2)=1$
$f(3)=f(2)+f(1)=1+0=1$
$f(4)=f(3)+f(2)=1+1=2$
$f(5)=f(4)+f(3)=2+1=3$
$f(6)=f(5)+f(4)=3+2=5$
After calculating this for a while, John realized that the values are becoming too big. In order to keep the values small, John changed his algorithm. Instead of calculating $f(n)=f(n-1)+f(n-2)$, he decided he will calculate $f(n)=(f(n-1)+f(n-2)) \% 10^{\wedge} 5$.

Now John wants to do some research on his new modified Fibonacci sequence. He will give you an integer $A\left(A<=10^{\wedge} 5\right)$ and an integer $B\left(B<=10^{\wedge} 6\right)$. You have to output all the terms from $f(A)$ to $f(A+B)$ in ascending order (non-decreasing order). But printing so many numbers is too much of a hassle. So, if there are more than 100 terms in the output, then only print the first 100.

Input

The first line contains an integer $\mathbf{T}(\mathbf{T}<=100)$, which is the number of test cases.
Each test case contains two positive integers \mathbf{A} and \mathbf{B} as mentioned before.

Output

For each test case, print case number (Check sample output) and then print the terms from $f(A)$ to $f(A+B)$ in ascending order (non-decreasing order). If there are more than 100 terms in the output, then only print the first 100.

Example

Input:

3
13
33
1001

Output:

