Badminton Tournament - Easy

In a badminton tournament, each of **n** players play all the other **n - 1** players. Each game results in either a win, or a loss. Players then write down the names of those whom they defeated(say list 1) and also of those who they(players of list 1) defeated. For example, if **A** beats **B** and **B** beats **C**, then **A** writes the names of both **B** and **C**.

Consider a game between A, B, C, D, E, F, G where A defeats B, C; B defeats E; C defeats F. Then A's list will have (B, C, E, F) and will not include G.

Note: Say **A** defeats **B**, **B** defeats **C** and **C** defeats **D**. **D** is not necessarily present in **A**'s list, a player's list contains players of list1 and players defeated by those in list1 (**immediate** win).

In this problem, we represent players by integers from 1 to **n**.(Both inclusive)

Input

First line of input contains an integer \mathbf{t} (number of test cases), each test case starts with an integer \mathbf{n} followed by $\mathbf{n_{c_2}}(\mathbf{i.e} \ \mathbf{n^*(n-1)/2})$ lines(results of all matches) each containing two integers \mathbf{a} , \mathbf{b} seperated by a space which means \mathbf{a} defeated \mathbf{b} .

Output

Print a line for each test case containing two space seperated integers **p**, **q** where **p** is the player with maximum possible number of players in his list and **q** is that number(maximum possible number of players in a list).

In case there are many players with maximum number of players in their list, print minimum of such possibilities of \mathbf{p} .

Constraints

 $t \le 50$, $n \le 250$, $1 \le a$, $b \le n$

Example

Input:

1

3

12

23

3 1

Output:

12