Badminton Tournament - Easy

In a badminton tournament, each of \mathbf{n} players play all the other $\mathbf{n - 1}$ players. Each game results in either a win, or a loss. Players then write down the names of those whom they defeated(say list 1) and also of those who they(players of list 1) defeated. For example, if \mathbf{A} beats \mathbf{B} and \mathbf{B} beats \mathbf{C}, then \mathbf{A} writes the names of both \mathbf{B} and \mathbf{C}.

Consider a game between A, B, C, D, E, F, G where A defeats B, C; B defeats E; C defeats F. Then A's list will have (B, C, E, F) and will not include G.

Note: Say A defeats B, B defeats C and C defeats D. D is not necessarily present in A's list, a player's list contains players of list1 and players defeated by those in list1 (immediate win).

In this problem, we represent players by integers from 1 to \mathbf{n}.(Both inclusive)

Input

First line of input contains an integer t (number of test cases), each test case starts with an integer \mathbf{n} followed by $\mathbf{n}_{\mathbf{c}_{\mathbf{2}}}\left(\mathbf{i} . \mathbf{e} \mathbf{n}^{*}(\mathbf{n}-1) / 2\right)$ lines(results of all matches) each containing two integers \mathbf{a}, \mathbf{b} seperated by a space which means a defeated \mathbf{b}.

Output

Print a line for each test case containing two space seperated integers \mathbf{p}, \mathbf{q} where \mathbf{p} is the player with maximum possible number of players in his list and \mathbf{q} is that number(maximum possible number of players in a list).
In case there are many players with maximum number of players in their list, print minimum of such possibilities of \mathbf{p}.

Constraints

$\mathbf{t}<=50, \mathbf{n}<=250,1<=\mathbf{a}, \mathbf{b}<=\mathbf{n}$

Example

Input:

Output:
12

