Determinant of Banded Matrices

Computing the determinant of a matrix using Gaussian elimination takes $\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$. On the other hand, computing the determinant of tridiagonal matrix is $\mathrm{O}(\mathrm{n})$ using a recurrence. In this problem you will compute the determinant of banded matrices. A band matrix is a sparse matrix, whose non-zero entries are confined to a diagonal band, comprising the main diagonal and zero or more diagonals on either side. In this problem, given a banded $\mathbf{N x N}$ square integer matrix with \mathbf{M} bands on each side of the diagonal, we ask you to compute the determinant of this matrix. For example a tridiagonal matrix has exactly 1 band on each side, and the $8 x 8$ Matrix in the sample input has 2 bands on each side. For a good discussion of banded matrices, see Thorson's paper at:
http://sepwww.stanford.edu/oldreports/sep20/20_11_abs.html

Input

A total of <10 inputs. For each input,
First line has dimension, $\mathbf{N}(\mathbf{1} \mathbf{\sim} \mathbf{N} \mathbf{5 0 1})$, of the matrix, followed by \mathbf{N} lines with \mathbf{N} integers, each less than 10001, and greater than -10001. It is guarantteed that the number of bands on each side of the diagonal, $\mathbf{M}<51$. That is there are at most 101 bands in total including the diagonal. Use scanf IO, and avoid stl IO.

Output

For each input matrix, output its determinant modulo 10^9+7.
Hint: Use Montgomery multiplication for fast computation, i.e., see:
http://everything2.com/title/Montgomery\%20multiplication

Example

Input:

2
20
02
2
10
01
8
10-100000
-110-10000
-1 0-11-1000
0-1 0-1 0-1 00
00-1010-10
0 0 0-1-110-1
0000-1 0-1 1
00000-10-1

Output:

