Beautiful Factorial Game

Beautiful Factorial Game

The statement of this problem is very simple. Given two number n and k, you need to find the maximum power of k (i.e. x) such that $n! \% k^x = 0$. Here n! is the notation of n factorial. If you are not familiar with the notation,

 $n! = 1 * 2 * 3 * 4 * 5 * 6 \dots * n$

Input:

First line of the input will contain an integer t ($1 \le t \le 20$) denoting the number of test case. The next t lines contain two integer number n and k as described above.

Constraints:

For easy version, 1 <= n <= 10, 2 <= k <= 10

For harder version, 1 <= n <= 100000000, 2 <= k <= 100000000

Output:

For each test case, print "Case t: x" where t is the test case number and x is the maximum power of k for which n! $% k^x = 0$.

Sample Input	Output of sample input
2	Case 1:3
52	Case 2:994
1000 2	

Explanation of the sample:

In the first test case, n = 5 and k = 2. So, n! = 120.

 $n! \% 2^{0} = 0$ $n! \% 2^{1} = 0$ $n! \% 2^{2} = 0$ $n! \% 2^{3} = 0$ $n! \% 2^{4} = 8$ $n! \% 2^{5} = 24$ $n! \% 2^{6} = 56$ $n! \% 2^{7} = 120$

So, the answer should be 3.

Problem Setter: Rakibul Islam