Beautiful Factorial Game

Beautiful Factorial Game

The statement of this problem is very simple. Given two number n and k, you need to find the maximum power of k (i.e. x) such that $n!\% k^{\wedge} x=0$. Here $n!$ is the notation of n factorial. If you are not familiar with the notation,

$$
n!=1 \text { * } 2 \text { * } 3 \text { * } 4 \text { * } 5 \text { * } 6 \ldots . . \text { * n }
$$

Input:

First line of the input will contain an integer $\mathrm{t}(1<=\mathrm{t}<=20$) denoting the number of test case. The next t lines contain two integer number n and k as described above.

Constraints:

For easy version, $1<=\mathrm{n}<=10,2<=\mathrm{k}<=10$
For harder version, $1<=\mathrm{n}<=100000000,2<=\mathrm{k}<=100000000$

Output:

For each test case, print "Case t : x " where t is the test case number and x is the maximum power of k for which $n!\% k^{\wedge} x=0$.

Sample Input	Output of sample input
2	Case 1:3
52	Case 2:994
10002	

Explanation of the sample:

In the first test case, $\mathrm{n}=5$ and $\mathrm{k}=2$. So, $\mathrm{n}!=120$.

$$
\begin{array}{r}
n!\% 2^{\wedge} 0=0 \\
n!\% 2^{\wedge} 1=0 \\
n!\% 2^{\wedge} 2=0 \\
n!\% 2^{\wedge} 3=0 \\
n!\% 2^{\wedge} 4=8 \\
n!\% 2^{\wedge} 5=24 \\
n!\% 2^{\wedge} 6=56 \\
n!\% 2^{\wedge} 7=120
\end{array}
$$

So, the answer should be 3 .

Problem Setter: Rakibul Islam

