Counting Magical Permutatitons

Counting Permutations

In a planet far away from Earth, there is a beautiful country named Magicland. The children of this country play a lot of interesting games with numbers. One of the most popular games is called Inversion. In this game, you will be given numbers from 1 to N . They are given in a certain order. You need to calculate all the inversions in the given permutation of the numbers. S/he who can say it first correctly wins the game. An inversion occurs when there exists a pair of indices i and j such that $i<j$ and given number at i-th position is greater than the number at j-th position.

For example, let us consider a permutation of numbers 1 to $5: 5,1,4,2,3$. This permutation has the following inversions: $(5,1),(5,4),(5,2),(5,3),(4,2),(4,3)$. Therefore, the number of inversion will be 6 . The first person to tell this number correctly will win this game.

For this problem, we want to know how many permutations of the numbers $1,2, \ldots, N$ will have at least K inversions.
A permutation X is different from another permutation Y if there exists some $i(1<=i<=N)$ for which the number in i-th position is different in these two permutations.

Input

The first line of input file contains the number of test cases, $\mathbf{T}(1<=\mathbf{T}<=50)$. Then \mathbf{T} cases follow:
Each case consists of one line which contains two integers: \mathbf{N} and \mathbf{K}.

Constraint

For Easy version, $\mathbf{1 < =} \mathbf{N}<=\mathbf{2 0 0}$ and $0<=\mathrm{K}<=\mathbf{3 0 0}$.
For Hard version, $\mathbf{1 < =} \mathbf{N}<=\mathbf{2 0 0 0}$ and $\mathbf{0}<=\mathrm{K}<=\mathbf{3 0 0 0}$.

Output

For each case, print "Case \mathbf{x} : \mathbf{y} " in a separate line, where \mathbf{x} is the case number and \mathbf{y} is the number of permutations with at least K inversions. As the number can be very large, print y modulo 10,007.

Sample Input	Sample Output
3	Case 1:5
31	Case 2: 1
21	Case 3: 3
32	

Problem Setter: Anindya Das

