Best Fit

You are given a sequence of N random values ($\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 3, \mathrm{~s} 4, \ldots \mathrm{sN}$) You have to find a function $f(t)=a^{*} t+b$ such that the Euclidean Distance between the given sequence and the function values where t varies from 1 to N is minimum.

In effect, you have to minimize

Output the values a and b for each test case, rounded up to 4 decimal places.

Input

Line 1: T/* Number of test cases T <= 1000 */
Line 2: N /* Number of values in first test case N <= 10000 */
Line 3: s1 s2 s3 s4 ... sN /* all values are less than 10000 and integers */

Output

$\mathrm{a} \mathrm{b} /$ / Output the values a and b rounded to 4 decimal places for each test case */

Example

Input:

3
3
111
3
123
3
131

Output:

0.00001 .0000
1.00000 .0000
0.00001 .6667

