Billiard

In a billiard table with horizontal side \mathbf{a} inches and vertical side \mathbf{b} inches, a ball is launched from the middle of the table. After $\mathbf{s}>0$ seconds the ball returns to the point from which it was launched, after having made \mathbf{m} bounces off the vertical sides and \mathbf{n} bounces off the horizontal sides of the table. Find the launching angle \mathbf{A} (measured from the horizontal), which will be between 0 and 90 degrees inclusive, and the initial velocity of the ball.

Assume that the collisions with a side are elastic (no energy loss), and thus the velocity component of the ball parallel to each side remains unchanged. Also, assume the ball has a radius of zero. Remember that, unlike pool tables, billiard tables have no pockets.

Input

Input consists of a sequence of lines, each containing five nonnegative integers separated by whitespace. The five numbers are: $\mathbf{a}, \mathbf{b}, \mathbf{s}, \mathbf{m}$, and \mathbf{n}, respectively. All numbers are positive integers not greater than 10000.

Input is terminated by a line containing five zeroes.

Output

For each input line except the last, output a line containing two real numbers (accurate to two decimal places) separated by a single space. The first number is the measure of the angle \mathbf{A} in degrees and the second is the velocity of the ball measured in inches per second, according to the description above.

Example

Input:

100100111
200100534
201132481900156
00000

Output:

45.00141 .42
33.69144 .22
3.097967 .81

