Bitmap

There is given a rectangular bitmap of size $n^{*} m$. Each pixel of the bitmap is either white or black, but at least one is white. The pixel in i-th line and j-th column is called the pixel (i, j). The distance between two pixels $\mathbf{p}_{\mathbf{1}}=\left(i_{1}, j_{1}\right)$ and $\mathbf{p}_{\mathbf{2}}=\left(i_{2}, j_{2}\right)$ is defined as:

$$
\mathrm{d}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)=\left|i_{1}-i_{2}\right|+\left|j_{1}-j_{2}\right| .
$$

Task

Write a program which:

- reads the description of the bitmap from the standard input,
- for each pixel, computes the distance to the nearest white pixel,
- writes the results to the standard output.

Input

The number of test cases t is in the first line of input, then t test cases follow separated by an empty line. In the first line of each test case there is a pair of integer numbers n, m separated by a single space, $1<=n<=182,1<=m<=182$. In each of the following n lines of the test case exactly one zero-one word of length m, the description of one line of the bitmap, is written. On the j-th position in the line $(i+1), 1<=i<=n, 1<=j<=m$, is ' 1 ' if, and only if the pixel (i, j) is white.

Output

In the i-th line for each test case, $1<=i<=n$, there should be written m integers $\mathrm{f}(i, 1), \ldots, \mathrm{f}(i, m)$ separated by single spaces, where $f(i, j)$ is the distance from the pixel (i, j) to the nearest white pixel.

Example

Sample input:

1
34
0001
0011
0110

Sample output:

3210
2100
1001

