Help Blue Mary Please! (Act II)

Today Mary's math homework is to solve an equation.

$$
\boldsymbol{k}_{1} \boldsymbol{x}_{1}^{p_{1}}+\boldsymbol{k}_{2} \boldsymbol{x}_{2}^{p_{2}}+\ldots \ldots . . \boldsymbol{k}_{n} \boldsymbol{x}_{n}^{p_{n}}=0
$$

She knows all ki and pi, and $1<=x i<=M$. All xi must be integers. She must work out the number of different solutions of this equation this day.Can you give her a hand?

Input

There is a single integer T in the very first line of the input denoted the number of tests. T blocks follow.

For each test case:
The first line contains a single integer $n(n<=6)$. The second line contains a single integer $m(m<=150)$.n lines follow,each contains two space-separated integers ki and pi, $i=1,2, \ldots, n$. All pi are positive.
$\left|k_{1} M^{p_{n}}\right|+\left|k_{2} M^{p_{1}}\right|+\ldots \ldots+\left|k_{n} M^{p_{n}}\right|<2^{31}$

Output

For each test case output a single line ,which contains a single integer - the answer.You may assume this number is less than $2^{\wedge} 31$.

Example

Input:
1
3
150
12
-1 2
12

Output:

178
Warning: The time limit is very strict for this problem.

