Stick values

On a sunny day, Stjepan and Bobert were arguing over their problem solving skill under a big apple tree. Bobert brought up a nice problem he had just recently solved and claimed that Stjepan could not solve it. Stjepan is desperate and needs your help. Here is Bobert's problem:

Given an array of $\mathbf{N}\left(1<=\mathbf{N}<=10^{\wedge} 5\right)$ numbers $\left(0<=\mathbf{a i}<=10^{\wedge} 9\right)$ and $\mathbf{K}(1<=K<=20)$ sticks of a certain length Li $(0$ $<=\mathrm{Li}<=\mathrm{N}$, such that the sum of all lengths is equal to N), find the best possible distribution of the sticks among the array such that:

1) a stick of length L_{x} can cover any interval of the array whose length is equal to the length of the stick (it can cover L_{x} consecutive numbers of the array)
2) all sticks must be used and can not overlap or leave the borders of the array
3) the value of a stick of length L_{x} covering the interval [lo, hi] is equal to: $L_{x}{ }^{*}$ (max[lo, hi] - min[lo, hi]) Note that: max = largest element of the array inside the interval and min = smallest element of the array inside the interval
4) the sum of all stick values must be as large as possible

Note: double-check your complexity

Input

The first line contains an integer N .
The second line contains N numbers representing the array.
The third line contains an integer K.
The fourth line contains K numbers representing the stick lengths.

Output

The only line should contain the solution - the maximum sum of stick values as explained in the task.

Example

Output:

