The Bottom of a Graph

We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product $V \times V$, its elements being called edges. Then $G=(V, E)$ is called a directed graph.

Let n be a positive integer, and let $p=\left(e_{1}, \ldots, e_{n}\right)$ be a sequence of length n of edges $e_{i} \in E$ such that $e_{i}=\left(v_{i}, v_{i+1}\right)$ for a sequence of vertices $\left(v_{1}, \ldots, v_{n+1}\right)$. Then p is called a path from vertex v_{1} to vertex v_{n+1} in G and we say that v_{n+1} is reachable from v_{1}, writing $\left(v_{1} \rightarrow v_{n+1}\right)$.

Here are some new definitions. A node v in a graph $G=(V, E)$ is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom $(G)=\{v \in V \mid \forall w \in V:(v \rightarrow w) \Rightarrow(w \rightarrow v)\}$. You have to calculate the bottom of certain graphs.

Input Specification

The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of $G=(V, E)$, where the vertices will be identified by the integer numbers in the set $V=\{1, \ldots, v\}$. You may assume that $1 \leq v \leq 5000$. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers $v_{1}, w_{1}, \ldots, v_{e}, w_{e}$ with the meaning that $\left(v_{j}, w_{j}\right) \in E$. There are no edges other than specified by these pairs. The last test case is followed by a zero.

Output Specification

For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

Sample Input

33
132331
21
12
0

Sample Output

13
2

