Bipartite Permutation (Hard)

Given a positive integer \mathbf{N}, consider any permutation of all the numbers from $\mathbf{1}$ to \mathbf{N}. It is required to create two partitions, $\mathbf{P}_{\mathbf{1}}$ and $\mathbf{P}_{\mathbf{2}}$, from these numbers such that $\left|\mathbf{s u m}\left(\mathbf{P}_{\mathbf{1}}\right)-\mathbf{\operatorname { s u m }}\left(\mathbf{P}_{\mathbf{2}}\right)\right|$ is minimum, where $\boldsymbol{\operatorname { s u m }} \mathbf{(X)}$ denotes the summation of all the numbers in partition \mathbf{X}. A partition is defined to be a non-empty subset of the permutation. In other words, find the minimum absolute difference between the summation of all the numbers in each partition. Note that you cannot leave out any number, every number from $\mathbf{1}$ to \mathbf{N} must be part of exactly one partition.

To add a little bit more of spice, also find the lexicographically smallest partition $\mathbf{P}_{\mathbf{1}}$ such that $\left|\operatorname{sum}\left(\mathrm{P}_{1}\right)-\operatorname{sum}\left(\mathrm{P}_{2}\right)\right|$ is minimum. To make your life easier, you don't need to output the entire sequence, only the hash of the sequence as computed by the function below would suffice.

```
def sequence_hash(sequence, B,M):
    result = 0
    for number in sequence:
        result = (result * B + number) % M
```

 return result

Input

The first line contains an integer \mathbf{T}, denoting the number of test cases. Each of the next subsequent \mathbf{T} lines contain three positive integers, \mathbf{N}, \mathbf{B} and \mathbf{M}.

Constraints

- $1 \leq T \leq 1000$
- $2 \leq \mathrm{N} \leq 10^{9}$
- $\mathrm{N}<\mathrm{B} \leq 10^{9}$
- $1 \leq M \leq 10^{9}$

Output

For each test case, first print the case number followed by the minimum absolute difference and the hash of the lexicographically smallest partition $\mathbf{P}_{\mathbf{1}}$.

Sample Input

12

7101000000000
8101000000000
9101000000000
100010000000001000000
10000001003001998244353
123456789987654321666666667
444444444666666666888888888

Sample Output

Case 1: 11
Case 2: 012
Case 3: 014
Case 4: 1124
Case 5: 11234
Case 6: 01247
Case 7: 012348
Case 8: 1123457
Case 9: 01000
Case 10: 0553178755
Case 11: 1214459309
Case 12: 0557434257

Challenge

Don't like challenges? Try the easier version here:
Bipartite Permutation

