Bridges

A new planet full of rivers was discovered and is being prepared for colonization. We want to connect every piece of land by bridges, the cost of building a bridge is its width.

Input

The first number in the input file is $\mathrm{T}<200$, the number of test cases. Each test case starts with a line with a integer, $N<=500$, the number of rivers. N lines are followed with 5 integers each, Di1, Fi1, Di2, Fi2 and $\mathrm{Wi}<=1000000$, the coordinates of the extremities and the width of the i-th river. Every D is between -90 and 90, and every F is between 0 and 359, they are measured in degrees and correspond to the spherical coordinates (latitude and longitude respectively). The two extremities of a river can be seen from above in a distance less than infinite, a course of a river is always the smallest possible and two rivers intersect in at most 1 point.

Output

For each test case print a single line with "Case \#X: C" where X is the number of the test case (starting from 1) and C is the minimum cost to build the bridges so the islands and continents are connected directly or indirectly to each other.

Example

Input:

3
4
009004
90001792
00-9001
-90 001791
6
0010903
00-2090 3
017910905
$0179-20901$
00017910
-20 9020901
1
02031

Output:

Case \#1: 1
Case \#2: 6
Case \#3: 0

