Base Exploration

Problem Statement is easy, for a given number N, you have to print the base B such that if we write N in base B then it would contain most 0 's at the end.

If more then one such base exist, which satisfy the given condition then print the smallest such base.

Input

The first line of the input consist of a single integer number t which determines the number of tests.

In each of next t lines there is a single integer number N.

Constraints

- $0<\mathrm{t} \leq 10^{5}$
- $2 \leq \mathrm{N} \leq 10^{12}$

Output

Output contains one line with one integer B such that N written in base B has the most zeros at the end and is the smallest B with this property.

Example

Input:
2
72
18
Output:
2
3

Explanation

The answer for $\mathrm{N}=72$ is $\mathrm{B}=2$, because $72=1001000_{2}$ (72 written in base 2) has 3 zeros at the end.
Using base 3, we only get 2 zeroes at the end (because $72=2200_{3}$),
using base 6 would also give us 2 zeros, and no other base would give us more than 1 zero

For $18,18=10010_{2}$ and $18=200_{3}$ so answer will be 3 .

Note:Testcase are regenerated on 23 June 2020.

As rejudge is disabled by SPOJ please submit your code again.

