A problem of Backtracking

You have to solve the following problem with Backtracking. You're given a sequence of 10 positive integers $n_{1}, n_{2}, n_{3}, \ldots, n_{9}, n_{10}$ and a positive value K.

To solve this problem you need to print a permutation $a_{1}, a_{2}, a_{3}, \ldots, a_{10}$ of the numbers $\{0,1,2,3,4,5,6,7,8,9\}$ such that $a_{1}{ }^{*} n_{1}+a_{2}{ }^{*} n_{2+} a_{3}{ }^{*} n_{3+} \ldots+a_{10}{ }^{*} n_{10} \leq K$

Input

In the first line, a single interger T , the number of test cases.
For each test case there will be two lines:
In the first one, 10 positive integers ($1 \leq n _i \leq 10^{\wedge} 9$) separeted by spaces.
In the second one, a single positive integer $\mathrm{K}\left(1 \leq \mathrm{K} \leq 10^{\wedge} 9\right)$.

Output

For each test case print a line with the answer for that test case as following:
Among all the permutations that solve the problem according to the description above, print the lexicographically smallest.

You've to print the permutation in a single line, separating each integer by a simple space.
If no such permutation exists, print a single line with "-1".

Example

Input:

2
12345678910
200
12345678910
100
Output:
2689754310
-1

