
Bundling
Outel, a famous semiconductor company, recently released a new model of microprocessor
called Platinium. Like many modern processors, Platinium can execute many instructions in one
clock step providing that there are no dependencies between them (instruction I2 is dependent on
instruction I1 if for example I2 reads a register that I1 writes to). Some processors are so clever
that they calculate on the fly which instructions can be safely executed in parallel. Platinium
however expects this information to be explicitly specified. A special marker, called simply a stop,
inserted between two instructions indicates that some instructions after the stop are possibly
dependent on some instructions before the stop. In other words instructions between two
successive stops can be executed in parallel and there should not be dependencies between
them.

Another interesting feature of Platinium is that an instruction sequence must be split into groups
of one, two or three successive instructions. Each group has to be packed into a container called
a bundle. Each bundle has 3 slots and a single instruction can be put into each slot, however
some slots may stay empty. Each instruction is categorized into one of 10 instruction types
denoted by consecutive capital letters from A to J (instructions of the same type have similar
functionality, for example type A groups integer arithmetic instructions and type F groups
instructions). Only instructions of certain types are allowed to be packed into one bundle. A
template specifies one permissible combination of instruction types within a bundle. A template
can also specify a position of a stop in the middle of a bundle (there is at most one such stop
allowed). In addition, stops are allowed between any two adjoining bundles. A set of templates is
called a bundling profile. When packing instructions into bundles, one has to use templates from
bundling profile only.

Although Platinium is equipped with an instruction cache it was found that for maximal
performance it is most crucial to pack instructions as densely as possible. Second important thing
is to use a small number of stops.

Your task is to write a program for bundling Platinium instructions. For the sake of simplicity we
assume that the instructions cannot be reordered.

Task

Write a program that:

reads a bundling profile and a sequence of instructions,
computes the minimal number of bundles into which the sequence can be packed without
breaking the dependencies and the minimal number of all stops that are required for the
minimal number of bundles,
writes the result.

Input

The input begins with the integer z, the number of test cases. Then z test cases follow.

The first line of each test case descripition contains two integers t and n separated by a single



space. Integer t (1 <= t <= 1500) is the number of templates in the bundling profile. Integer n (1 <=
n <= 100000) is the number of instructions to be bundled.

Each of the next t lines specifies one template and contains 3 capital letters t1,t2,t3 with no spaces
in between followed by a space and an integer p. Letter ti (A < = ti<= J) is an instruction type
allowed in the i-th slot. Integer p (0 <= p <= 2) is the index of the slot after which the stop is
positioned (0 means no stop within the bundle).

Each of the next n lines specifies one instruction. The i-th line of these n lines contains one
capital letter ci and an integer di, separated by a single space. Letter ci (A <= ci<=J) is the type of
the i-th instruction. Integer di (0 < = di < i) is the index of the last instruction (among the previous
ones) that the i-th instruction is dependent on (0 means that the instruction is not dependent on
any former instruction).

You can assume that for each instruction type c describing an instruction in the instruction
sequence there is at least one template containing c.

Output

For each test case, the first and only line of the output contains two integers b and s. Integer b is
the minimal number of bundles in a valid packing. Integer s is the minimal number of all stops
that are required for the minimal number of bundles.

Example

Sample input:
1
4 9 
ABB 0 
BAD 1 
AAB 0 
ABB 2 
B 0 
B 1 
A 1 
A 1 
B 4 
D 0 
A 0 
B 3 
B 0 

Sample output: 
4 3 

Warning: large Input/Output data, be careful with certain languages


	Bundling
	Task
	Input
	Output
	Example


