Captain Selection

There are N people and M teams. Each team is a subset of N people.

For each team, we need to pick a captain. No people could be a captain of more than one

 team.A person \mathbf{a} is said to be a subordinate of a person \mathbf{b} if there is some team including both $a \operatorname{and} b$ in which b is the captain.

A captain selection process is said to be valid if we could not find a sequence of more than 2 people $a_{1}, a_{2}, \ldots, a_{k}$ such that ai is a subordinate of $a_{i+1}(i<k)$ and a_{k} is a subordinate of a_{1}.

For example, if we have 4 people and 3 teams:
Team 1: $\{1,2,3\}$
Team 2: $\{2,3,4\}$
Team 3: $\{3,4,1\}$
The captain selection process:
Captain 1: 1
Captain 2: 2
Captain 3: 4
is not valid since 1 is a subordinate of 4,4 is a subordinate of 2 and 2 is a subordinate of 1 .
Your job is to determine a valid captain selection process.

Input

The first line contains a number t (about 10), which is the number of test cases. Then t test cases follow. Each test case has the following form.

The first line contains two numbers N and $\mathrm{M}(1 \leq \mathrm{N}, \mathrm{M} \leq 50)$.
Each of the M teams is described in the next 2 lines. The first line contains the number of people in the team. Each team has either 2 or 3 people. The second line contains the indexes (1based) of the people in that team.

There is a blank line after each test case's input.

Output

For each test case, print a number -1 if there is no valid captain selection process.
Otherwise, print M lines, each line contains the index of the captain of the corresponding team.
Print a blank line after each test case's output.

Example

```
Input:
```

2
43
3
123
3
234
3
341
43
3
123
2
24
3
342

Output:
-1

