Cardsharper

Zenek is a well known (at least in Byteotia) card-sharper. He spent most of his best years practicing one card shuffle with his deck of \mathbf{n} cards, which for simplicity we will call $1,2, \ldots, \mathbf{n}$. Unfortunately, it turns out that knowing this one card shuffle a is not enough to earn a good living. To become rich and famous Zenek needs to know \mathbf{k} shuffles $\mathbf{c}_{\mathbf{1}}, \ldots, \mathbf{c}_{\mathbf{k}}$. As he doesn't have enough time to learn all of them, he decided to learn only one shuffle \mathbf{b} so that using both \mathbf{a} and \mathbf{b} he will be able to perform as many of $\mathbf{c}_{\mathbf{i}}$ as it is possible.

Each shuffle is described by \mathbf{n} numbers $\mathbf{t}_{\mathbf{1}}, \mathbf{t}_{\mathbf{2}}, \ldots, \mathbf{t}_{\mathbf{n}}$. Such description means that after performing shuffle, card that was originally at position \mathbf{i} will be at position $\mathbf{t}_{\mathbf{i}}$.

Task

Find shuffle b maximizing number of shuffles that can be performed.

Input

First line contains $\mathbf{n}(2 \leq \mathbf{n} \leq 52)$. Second line contains \mathbf{n} numbers $\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \ldots, \mathbf{a}_{\mathbf{n}}$ describing shuffle that Zenek already knows. Third line contains $\mathbf{k}(2 \leq \mathbf{k} \leq 6)$. \mathbf{i}-th of the next \mathbf{k} lines contains description of $\mathbf{c}_{\mathbf{i}}$.

Output

First line contains description of the shuffle \mathbf{b} that Zenek should learn. \mathbf{i}-th of the next \mathbf{k} lines contains:

- -1 when it is not possible to perform $\mathbf{c}_{\mathbf{i}}$ using only \mathbf{a} and \mathbf{b}
- $\mathbf{m}, \mathbf{r}_{\mathbf{1}}, \mathbf{r}_{\mathbf{2}}, \ldots, \mathbf{r}_{\mathbf{m}}\left(0 \leq \mathbf{m} \leq 500000,0 \leq \mathbf{r}_{\mathbf{i}} \leq 10^{6}\right)$ meaning that applying $\mathbf{a} \mathbf{r}_{\mathbf{1}}$ times, then $\mathbf{b} \mathbf{r}_{\mathbf{2}}$ times, then $\mathbf{a} \mathbf{r}_{\mathbf{3}}$ times and so on is the same as applying shuffle $\mathbf{c}_{\mathbf{i}}$ once.

Examples

Input

5
23451
3
13245
12345
54321

Output

21345
3411
0
9113141111

Input

5
12345
3
13245
54321
12543

Output

13245
201
-1
-1

