Tri

Task

You are given \mathbf{K} points with positive integer coordinates. You are also given \mathbf{M} triangles, each of them having one vertex in the origin and the other 2 vertices with non-negative integer coordinates.

You are asked to determine for each triangle whether it has at least one of the \mathbf{K} given points inside. (None of the K points are on any edge of any triangle.)

Input

The first line of the input file will contain \mathbf{K} and \mathbf{M}. The following \mathbf{K} lines will contain 2 positive integers $\mathbf{x} \mathbf{y}$ separated by one space that represent the coordinates of each point. The next \mathbf{M} lines have 4 non-negative integers separated by one space, ($\mathbf{x} 1, \mathbf{y} \mathbf{1}$) and ($\mathbf{x 2}$, $\mathbf{y 2}$), that represent the other 2 vertices of each triangle, except the origin.

Output

The output file should contain exactly \mathbf{M} lines. The k-th line should contain the character \mathbf{Y} if the k-th triangle (in the order of the input file) contains at least one point inside it, or \mathbf{N} otherwise.

Constraints

- $1 \leq K, M \leq 100000$
- $1 \leq$ each coordinate of the \mathbf{K} points $\leq 10^{9}$
- $0 \leq$ each coordinate of the triangle vertices $\leq 10^{9}$
- Triangles are not degenerate (they all have nonzero area).
- In 50% of the test cases, all triangles have vertices with coordinates $\mathbf{x 1}=\mathbf{0}$ and $\mathbf{y 2}=\mathbf{0}$. That is, one edge of the triangle is on the x-axis, and another is on the y-axis.

Sample input 1

43
12
13
51
53
1433
2241
4463

Sample output 1

Y
N
Y

Explanation for sample 1

Sample input 2

42
12
13
51
43
0210
0350

Sample output 2

N
Y

Explanation for sample 2

