Number of divisors of factorial

The goal of the problem is to compute the number of divisors of $\$ \mid t e x t\{F a c t o r i a l\}(n) \$$.

Input

The first line of the input consist of a single integer number $\$ \mathbf{\$} \$$ which determines the number of tests.

In each of next $\$ \$ \$$ lines there is two integer numbers $\$ n \$$ and $\$ m \$$.

Constraints

- $\$ 0<t<10^{\wedge} 2 \$$;
- $\$ 0<\mathrm{n}<2$ limes $10^{\wedge} 5 \$$;
- $\$ 1<\mathrm{m}<2$ 2times10^9\$.

Output

For each test case, print the number of divisors of \$n! \pmod m\$.

Example

Input:
3
21000
3100
12341000000007
Output:
2
4
787315782

Explanation

For the first test case, $\$ 2!=1$ times $2=2 \$$, whose number of divisors is $\$ 2 \$$.
For the second test case, $\$ 3!=1$ times2ltimes $3=6 \$$, whose number of divisors is $\$ 4 \$$.

