Continuous Fractions Again

A simple continuous fraction has the form:

where the ai's are integer numbers.

The previous continuous fraction could be noted as [a1, a2, . . . an]. It is not difficult to show that any rational number p / q, with integers $p>q>0$, can be represented in a unique way by a simple continuous fraction with n terms, such that $p / q=[a 1, a 2, \ldots, a n-1,1]$, where n and the ai's are positive natural numbers.

Now given a simple continuous fraction, your task is to calculate a rational number which the continuous fraction most corresponds to it.

Input

Input for each case will consist of several lines. The first line is two integer m and n,which describe a char martrix,then followed m lines,each line cantain n chars. The char martrix describe a continuous fraction The continuous fraction is described by the following rules:

- Horizontal bars are formed by sequences of dashes `-'.
- The width of each horizontal bar is exactly equal to the width of the denominator under it.
- Blank characters should be printed using periods `.'
- The number on a fraction numerator must be printed center justified. That is, the number of spaces at either side must be same, if possible; in other case, one more space must be added at the right side.

The end of the input is indicated by a line containing 00 .

Output

Output will consist of a series of cases, each one in a line corresponding to the input case. A line describing a case contains p and q, two integer numbers separated by a space, and you can assume that $10^{\wedge} 20>p>q>0$.

Example

Input:
917
..........1.....
2.+.-
.................
....4.+.--------
..............1..
........1.+.----
.. 1
............5.+.-
510
....1...
1.+.------
......... 1
....11.+.-
......... 1
00
Output:
7534
1312

