Chicks

There are n hens in a farm. The egg hatching ability of all the hens decreases by 1 day after each time they hatch an egg. (i.e. every hen will hatch the next egg 1 day slower than the time it took to hatch the previous egg)

Let the initial egg hatching ability of Hen[i] be $D[i]$.

- Hen[i] lays it's first egg on $D[i]$ th day.
- Hen[i] lays it's second egg on 2*D[i]+1 th day.
- Hen[i] lays it's thrid egg on $3^{*} D[i]+3 r d$ day.
- Hen[i] lays it's fourth egg on $4^{*} D[i]+6$ th day.
- Hen[i] lays it's fifth egg on $5 * D[i]+10$ th day.
and so on..

Given \mathbf{n} - the number of hens and the array \mathbf{D} - the initial egg hatching ability of the hens, find the minimum number of days required to produce at least \mathbf{K} eggs. You can safely assume that eggs neither gets damaged nor converted into hens.

Input

The first line consists of integers \mathbf{t}, the number of test cases. For each test case, the first line consists two integers \mathbf{n} and \mathbf{K}. The next line consists of \mathbf{n} integers representing the initial egg hatching ability of the hens.

Output

For each test case, find the minimum number of days required to produce at least \mathbf{K} eggs.

Constraints

$1<=\mathrm{t}<=10^{\wedge} 2$
$1<=\mathrm{n}<=10^{\wedge} 3$
$1<=\mathrm{K}<=10^{\wedge} 8$
$1<=\mathrm{D}[\mathrm{i}]<=10^{\wedge} 8$

Example

Sample Input:

3

14
1
25
25
51000000
12345
Sample Output:

Explanation of Test case \#2

There are 2 hens and we need to produce 5 eggs
At time 2, Hen 0 lays an egg.
At time 5, Hen 0 and Hen1 lay an egg each.
At time 9, Hen 0 lays an egg
At time 11, Hen1 lays an egg.

