Natural numbers

Implement arithmetic operations for nonnegative integers whose values are allowed to be beyond the range supported by the computer's built-in integer arithmetics. Given two nonnegative integers A and B, the code should be able to decide whether $A<B, A=B$, or $A>B$, and to compute

- $A+B$,
- $A-B$, with the convention that $A-B=0$ for $A<B$,
- A * B,
- A / B (integer division)
- A \% B (remainder).

Moeover, we introduce the new operation called truncated multiplication A \# B [M], as follows. This operation will depend on the particular base in which the numbers are represented, and within the tests, it is assumed that the base is 100 . In other words, we assume that any number A is represented within the code as
$A=A _0+A _1$ * $B A S E+A _2$ * BASE^2 + ... ,
where $0<=A _k<B A S E$ are the digits, and we set BASE $=100$ for the purposes of the tests. One can write the product A * B as
A * $\mathrm{B}=\mathrm{A} _0^{*} \mathrm{~B} _0$ + (A_0*B_1+A_1*B_0) * BASE + (A_0*B_2+A_1*B_1+A_2*B_0) * BASE^2 + ...

If we remove the first $\mathrm{M}-1$ terms from this expansion, and divide the result by BASE^M, we get the truncated product A \# B [M]. Note that truncated multiplication depends on a parameter M, which may be assumed to be a moderate sized integer (in particular well within the 32 bit range). For example, we have
$910{ }^{*} 820=\left(10+9^{*} 100\right)^{*}\left(20+8^{*} 100\right)=10^{*} 20+\left(10^{*} 8+9^{*} 20\right)^{*} 100+\left(9^{*} 8\right)^{*} 100^{\wedge} 2=200+260^{*} 100+72^{*} 100^{\wedge} 2=746200$ and hence

910 \# $820[\mathrm{M}=1]=260+72^{*} 100=7460$
and
910 \# $820[\mathrm{M}=2]=72$
If M is not too large, the digits of A \# $B[M]$ approximate the most significant digits of the product A * B well, so this operation can be used in multiplying mantissas of floating point numbers (Multiplying the mantissas exactly would result in too many digits, and a lot of them woud be meaningless anyway).

Input

All numbers in input and output should be nonnegative integers in decimal notation. The first line of the input is the number N of test cases. Then each of the following N lines has either the format
or
c ABM
where c is one of the characters '<', '+', '-', '*', '\#', 'l', describing the arithmetic operation to be performed on the numbers A and B (and possibly M). The second format (and hence the number M) is used only when $\mathrm{c}=$ '\#'. We emphasize again that in the tests we have, it is assumed that $B A S E=100$.

Output

The output should consist of N lines, with each line containing the result of the arithmetic operation in the corresponding line of the input.

- For division, the output is 2 integers A / B and $A \% B$, separated by a space. If $B=0$, then return 00 (two zeroes).
- For all other operations, the ouput is one integer.
- For ' $<$ ', the output should be 1 if $A<B, 0$ if $A=B$, and -1 if $A>B$.
- In case of subtraction $A-B$ with $A<B$, the ouput should be 0 .

Example

Input:

15
< 10001999
< 98989898
< 1234123
< 00

+ 1791593436984766559642626609333245051871307634751338542477034677711517175
- 10001
- 985145431861564574372454444046802986240153566442954896526103872421591156
* 3333333330
* 13333333335555
* 999
/ 1999
/ 9992
/ 8615645743724544440468029862307634751338542477036442954896526103872421591156 \# 101020201
\# 61966545837265291168899960856426721871229106292122272776

Output:

3333333335555
9999999999999999999999999999999999999989000000000000000000000000000000000000001
01
4991
1337219627033227645985829723863328422309867552415
20400
3496569047280138337581751280571264068913704

