n-th root

Compute 101 significant figures of the n-th root of a number.

Input

The first line of the input contains the number of test cases. In each of the following lines, the numbers n and x are given, where n is a positive (32 bit) integer, and x is a floating point number with arbitrary precision.

Output

Each line of the output should be the sequence consisting of the first 101 digits of the positive n-th root of x. All trailing and leading zeroes, as well as the decimal point (if any) should be removed.

Score

For each test case, let K be the first position of the digit where the first difference to the reference solution occured. Then the score awarded to the test case will be K divided by the number of digits M in the reference solution. The numbers K and M are not larger than 101. For example, let us say we are computing the square root of 1.44 , and the ouput is 11 . Then since the reference solution is 12 , this solution would receive the score of $0.5(50 \%)$. The final score of the problem is the sum of the scores over all test cases, normalized so that the maximum possible score is 10 .

Example

Input:

4
32
416
25
23.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679

Output:

12599210498948731647672106072782283505702514647015079800819751121552996765139594837293965624362550941 2

22360679774997896964091736687312762354406183596115257242708972454105209256378048994144144083787822749
17724538509055160272981674833411451827975494561223871282138077898529112845910321813749506567385446653

