Collatz

Let N be a positive integer, Consider the following recurrence: $f(1)=N$ and $f(K)=\left(0.5+2.5^{*}(f(K-\right.$ 1) $\bmod 2))^{*} f(K-1)+(f(K-1) \bmod 2)$ if $K>1$. For a given N you have to compute the smallest L for which $f(\mathrm{~L})=1$ (such an L always exists for N's in the input).

Input

Each line contains a positive integer N in decimal notation. You can be sure that N and all intermediate results are not bigger than 10^1888. Input terminated by EOF.

Output

For each number N in the input print one line with the value of L in decimal notation.

Example

```
Input:
1
2
321
11111111111111
111111111111111111111111111111111111111111111111111111111111111
```


Output:

1
2
25
261
1296

