Count weighted paths

John likes to take a walk from his house to university. He needs to arrive his university in at most \mathbf{T} seconds after leaving his home. We can represent the situation as a \mathbf{N} vertices graph. Vertex 0 of the graph will be John's home and vertex 1 John's university. There can be bidirectional roads connecting pairs of vertices, each road will take John some seconds to cross.

John likes variety. We consider a valid path to be a sequence of vertices that starts with vertex 0 (John's house) and finishes with vertex 1 (The University) and there exists a road connecting each pair of consecutive vertices in the sequences (Note that a vertex may appear multiple times in the path). The total time John needs to traverse a path is equal to the sum of the times needed to cross each individual road in it. Please count the total number of different paths that need at most \mathbf{T} minutes to be traversed in total. Two paths are different if there is at least one moment at which they visit different vertices.

Given \mathbf{T}, \mathbf{N} and the roads between the vertices, ¿How many different paths that need at most \mathbf{T} seconds exist? Print the result modulo $1000000007\left(10^{9}+7\right)$.

Input

The first line consists of a integer TOTAL, the total number of test cases ($1<=\mathbf{N}<=10$).
Each of the following test cases begins with a single line that contains two integers: \mathbf{N} and \mathbf{T}. (2 $<=\mathbf{N}<=5),\left(1<=\mathbf{T}<=1000000000\left(10^{9}\right)\right.$).

The \mathbf{N} following lines are indexed from $\mathbf{i}=0$ to $\mathbf{N}-1$. The \mathbf{i}-th line will represent the roads that connect vertex \mathbf{i} with other vertices. The line will consist of \mathbf{N} character indexed from $\mathbf{j}=0$ to $\mathbf{N}-1$. The \mathbf{j}-th character of the \mathbf{i}-th line represents the road connecting vertex \mathbf{i} with vertex \mathbf{j}. If the character is '-', this means no road connectes vertices \mathbf{i} and \mathbf{j}. Otherwise, the character will be a digit equal to 1,2 or 3 , determining the number of minutes it takes John to move between vertices \mathbf{i} and \mathbf{j}.

For every pair (i,j), the road character between \mathbf{i} and \mathbf{j} will be the same as the one between \mathbf{j} and i.

For each \mathbf{i}, there will never be a road cannecting vertex \mathbf{i} with itself.
Vertex 0 represents John's house and Vertex 1 John's university.

Output

For each test case, show in a single line: "Case \#i: R", where R is the total number of valid paths between vertices 0 and 1 donde R that need a quantity of at most \mathbf{T} segundos .

Example

Input:

3
29
-3
3-
54
--123
--123
11---
22---
33---
3100
-21
2-3
13-

Output:

Case \#1: 2
Case \#2: 4
Case \#3: 924247768

Notes

There are two paths in the first case that need 9 minutes or less:

- $0->1$ (3 minutes)
- 0 -> 1 -> $0->1$ (9 minutes)

The second case contains 4 paths that need at most 4 minutes to be traversed:

- $0->2$-> 1 (2 minutes)
- 0 -> $3->1$ (4minutes)
- $0 \rightarrow 2->0->2->1$ (4 minutes)
- $0->2$-> $1->2$-> 1 (4minutes)
$0->4->1$ is a path that needs 6 minutes.

