Air Combat

An air combat is on the way, you are asked to command this war. Now planes of enemy are full of the sky. A plane is described with three-dimensional coordinate (x, y, z) ($1000<x, y, z<1200$), and all coordinates are integers. As is show below:
(X1, Y1, Z1)

You have created a missile which can destroy all the planes in a cube whose center is ($\mathrm{x}, \mathrm{y}, \mathrm{z}$), and the cube can be as large as ($x-r, y-r, z-r)(x+r, y+r, z+r)$. This missile is so fierce that it will destroy not only enemy in that space, but also friends. And after that a position is occupied by a plane belongs to the opposite side before the explosion, that is to say an enemy plane will be replaced by a friend, a friend will be replaced by an enemy.

You want to reduce our loss, so you need to know which side a plane belongs to in a position.

Input

The first line contains the number of scenarios.
For each scenario you are given a line containing $x 1$ y1 z1 x2 y2 z2, defining the two corners $A(x 1, y 1, z 1), B(x 2, y 2, z 2)(1000<=x 1<x 2, y 1<y 2, z 1<z 2<=1200)$ of the sky. The combat is so fierce that every point in the cube is occupied by an enemy plane at first.

Next line is a number of operation q.
Next q lines: ($0<q<10000$)
A character ' U ': followed by 4 integers, a center point $M(x i, ~ y i, ~ z i)$, the range is ri.
A character ' Q ': followed by 3 integers, a position N (xi, yi, zi), if a plane belongs to us, print "Friend" else print "Enemy".

Points M and N are all in cube given above.

Output

Print a line for every ' Q ' operation.

Example

Input:

1

100010001000100210021002
4
U 1000100010000
U 1001100110011
Q 100010001000
Q 100110011001

Output:

Enemy
Friend

