Commuting Functions

Two functions f and $g(f, g: X \rightarrow X)$ are commuting if and only if $f(g(x))=g(f(x))$ for each x in X. For example, functions $f(x)=x+1$ and $g(x)=x-2$ are commuting, whereas functions $f(x)=x+1$ and $g(x)=2 x$ are not commuting.

Each function $h\left(h: N_{n} \rightarrow N_{n}\right.$, where $N_{n}=\{1,2, \ldots n\}$ and n is positive integer) can be represented as a value list - a list in which the i-th element is equal to $h(i)$. For example, a function $h(x)=$ $\operatorname{ceil}(\mathrm{x} / 2)$ from N_{5} to N_{5} has the value list [1, 1, 2, 2, 3].

The value lists are ordered lexicographically: list $\left[a_{1} \ldots a_{n}\right]$ is smaller than list $\left[b_{1} \ldots b_{n}\right]$ if and only if there exists such an index k that $a_{k}<b_{k}$, and $a_{l}=b_{l}$ for any index $l<k$.

The function $f(f: X \rightarrow X)$ is bijective if for every y in X, there is exactly one x in X such that $f(x)=y$.
Given a bijective function $f\left(f: N_{n} \rightarrow N_{n}\right.$, n is positive integer), find the function g that is commuting with f and has the lexicographically smallest possible value list.

Input

The first line of the input file contains the number of test cases. Each test case is described by a line containing a single integer number n - the number of the elements in the value list of a bijective function $f(1 \leq n \leq 200000)$, followed by another line which contains the value list of the function f .

Output

For each test case, output a single line containing n integer numbers - the value list of function g that commutes with the function f and has the lexicographically smallest value list.

Example

Input:

2
10
12345678910
10
23456781910

Output:

1111111111
1234567899

