Consecutive Digits

As a recruiting ploy, Google once posted billboards in Harvard Square and in the Silicon Valley area just stating " $\{f i r s t 10$-digit prime found in consecutive digits of e\}.com". In other words, find that 10-digit sequence and then connect to the web site - and find out that Google is trying to hire people who can solve a particular kind of problem.

Not to be outdone, Gaggle (a loosy-goosy fuzzy logic search firm), has devised its own recruiting problem. Consider the base 7 expansion of a rational number. For example, the first few digits of the base 7 expansion of $1 / 5_{10}=0.12541 \ldots 7,33 / 4_{10}=11.15151 \ldots 7$, and $6 / 49_{10}=0.06000 \ldots 7$, From this expansion, find the digits in a particular range of positions to the right of the "decimal" point.

Input

The input file begins with a line containing a single integer specifying the number of problem sets in the file. Each problem set is specified by four base 10 numbers on a single line, $n \mathrm{db} e$, where n and d are the numerator and denominator of the rational number and $0 \leq \mathrm{n} \leq 5,000$ and $1 \leq \mathrm{d} \leq$ 5,000 . b and e are the beginning and ending positions for the desired range of digits, with $0 \leq b, e$ ≤ 250 and $0 \leq(e-b) \leq 20$. Note that 0 is the position immediately to the right of the decimal point.

Output

Each problem set will be numbered (beginning at one) and will generate a single line: Problem set k : n / d, base 7 digits b through e: result where k is replaced by the problem set number, result is your computed result, and the other values are the corresponding input values.

Example

Input:

4
1500
64913
33427
511977122126

Output:

Problem set 1: $1 / 5$, base 7 digits 0 through 0 : 1
Problem set 2: 6 / 49, base 7 digits 1 through 3: 600
Problem set 3: 33 / 4, base 7 digits 2 through 7: 151515
Problem set 4: 511 / 977, base 7 digits 122 through 126: 12425

