Cut on a tree

A path of rooted tree is a "straight-chain" iff for each node pair (u, v) on the path, either u is the ancestor of v, or v is the the ancestor of u.

Given a rooted tree with weighted nodes, decompose it into several "straight-chain",so that the quadratic sum of all "straight-chain" is minimum. The weight of a "straight-chain" is the sum of the weights of all the nodes on this chain.

Input

The first line contains an integer $\mathrm{N}(\mathrm{N}<=1200000)$,the number of nodes.
The second line contains n integers $\mathrm{w} 1, \mathrm{w} 2, \ldots, \mathrm{wn}$.wi represents ith-node's weight.
The following n-1 lines, each line describes an edge of the tree.
The nodes are numbered from 1 to n , and 1 is the root.

Output

An integer,the minimum quadratic sum.
It's guaranteed that the answer will not exceed $10^{\wedge} 14$.

Example

Input:
7
-4-1054 1-1-5
12
23
14
25
56
57
Output:
42

