Making Chess Boards

The chess board industry has fallen on hard times and needs your help. It is a little-known fact that chess boards are made from the bark of the extremely rare Croatian Chess Board tree, (Biggus Mobydiccus). The bark of that tree is stripped and unwrapped into a huge rectangular sheet of chess board material. The rectangle is a grid of black and white squares.

Your task is to make as many large square chess boards as possible. A chess board is a piece of the bark that is a square, with sides parallel to the sides of the bark rectangle, with cells colored in the pattern of a chess board (no two cells of the same color can share an edge).

Each time you cut out a chess board, you must choose the largest possible chess board left in the sheet. If there are several such boards, pick the topmost one. If there is still a tie, pick the leftmost one. Continue cutting out chess boards until there is no bark left. You may need to go as far as cutting out 1 -by-1 mini chess boards.

Here is an example showing the bark of a Chess Board tree and the first few chess boards that will be cut out of it.

Input

The first line of the input gives the number of test cases, T. T test cases follow. Each one starts with a line containing the dimensions of the bark grid, \mathbf{M} and \mathbf{N}. \mathbf{N} will always be a multiple of 4 . The next M lines will each contain an ($\mathbf{N} / 4$)-character hexadecimal integer, representing a row of the bark grid. The binary representation of these integers will give you a strings of \mathbf{N} bits, one for each row. Zeros represent black squares; ones represent white squares of the grid. The rows are given in the input from top to bottom. In each row, the most-significant bit of the hexadecimal integer corresponds to the leftmost cell in that row.

Output

For each test case, output one line containing "Case \#x: K", where x is the case number (starting from 1) and \mathbf{K} is the number of different chess board sizes that you can cut out by following the procedure described above. The next \mathbf{K} lines should contain two integers each -- the size of the chess board (from largest to smallest) and the number of chess boards of that size that you can cut out.

Limits

$1 \leq \mathbf{T} \leq 100$;
\mathbf{N} will be divisible by 4 ;
Each hexadecimal integer will contain exactly $\mathbf{N} / 4$ characters.
Only the characters 0-9 and A-F will be used.
The input file will be at most 200kB in size.

Example

Input:

4
1520
55555
FFAAA
2AAD5
D552A
2AAD5
D542A
4AD4D
B52B2
52AAD
AD552
AA52D
AAAAA
5AA55
A55AA
5AA55
44
0
0
0
0
44
3
3
C
C
44
6
9
9
6

Output:

Case \#1: 5
62
43
37

215
157
Case \#2: 1
116
Case \#3: 2
21
112
Case \#4: 1
24

