Perfect Cubes

For hundreds of years Fermat's Last Theorem, which stated simply that for $n>2$ there exist no integers $a, b, c>1$ such that $a^{\wedge} n=b^{\wedge} n+c^{\wedge} n$, has remained elusively unproven. (A recent proof is believed to be correct, though it is still undergoing scrutiny.) It is possible, however, to find integers greater than 1 that satisfy the "perfect cube" equation $a^{\wedge} 3=b^{\wedge} 3+c^{\wedge} 3+d^{\wedge} 3$ (e.g. a quick calculation will show that the equation $12^{\wedge} 3=6^{\wedge} 3+8^{\wedge} 3+10^{\wedge} 3$ is indeed true). This problem requires that you write a program to find all sets of numbers $\{a, b, c, d\}$ which satisfy this equation for $a<=100$.

The output should be listed as shown below, one perfect cube per line, in non-decreasing order of a (i.e. the lines should be sorted by their a values). The values of b, c, and d should also be listed in non-decreasing order on the line itself. There do exist several values of a which can be produced from multiple distinct sets of b, c, and d triples. In these cases, the triples with the smaller b values should be listed first.

Note that the programmer will need to be concerned with an efficient implementation. The official time limit for this problem is 2 minutes, and it is indeed possible to write a solution to this problem which executes in under 2 minutes on a 33 MHz 80386 machine. Due to the distributed nature of the contest in this region, judges have been instructed to make the official time limit at their site the greater of 2 minutes or twice the time taken by the judge's solution on the machine being used to judge this problem.

The first part of the output is shown here:

```
Cube =6, Triple = (3,4,5)
Cube = 12, Triple = (6,8,10)
Cube =18, Triple = (2,12,16)
Cube =18, Triple = (9,12,15)
Cube =19, Triple = (3,10,18)
Cube =20, Triple = (7,14,17)
Cube =24, Triple = (12,16,20)
```

