Summing to a Square Prime

\$S_\{P2\} =
{p \mid p: \mathrm\{prime\} \wedge (lexists x_1, x_2 \in \mathbb\{Z\}, p = x_1^2 + x_2^2) } $1\} \$$ is the set of all primes that can be represented as the sum of two squares. The function \$S_\{P2\}(n)\$ gives the \$n\$th prime number from the set \$S_\{P2\}\$. Now, given two integers \$n\$ ($\$ 0<n<501 \$$) and $\$ k \$(\$ 0<k<4 \$)$, find $\$ p\left(S _\{P 2\}(n), k\right) \$$ where $\$ p(a, b) \$$ gives the number of unordered ways to sum to the given total '\$a\$' with '\$b\$' as its largest possible part. For example: $\$ p(5,2)=3 \$$ (i.e. $\$ 2+2+1 \$, \$ 2+1+1+1 \$$, and $\$ 1+1+1+1+1 \$)$. Here $\$ 5 \$$ is the total with $\$ 2 \$$ as its largest possible part.

Input

The first line gives the number of test cases $\$ 7 \$$ followed by $\$ T \$$ lines of integer pairs, $\$ n \$$ and \$k\$.

Constraints

- $\$ 0<\mathrm{T}<501 \$$
- $\$ 0<n<501 \$$
- \$1 < S_\{P2\}(n) < 7994\$
- $\$ 0<k<4 \$$

Output

The \$p(S_\{P2\}(n), k)\$ for each \$n\$ and \$k\$. Append a newline character to every test cases' answer.

Example

Input:

3
22
32
53
Output:
3
7
85

