Find The Determinant II

In this problem you have to calculate the determinant of an $\mathrm{N} \times \mathrm{N}$ matrix whose entries are given by $\mathbf{m}[i][j]=\operatorname{gcd}(\mathbf{i}, \mathrm{j})^{\mathbf{k}}, 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{N}$.

Here $\operatorname{gcd}(i, j)$ denotes the greatest common divisor of i and j.
As the determinant D can grow very large, you have to print D\%1000003.

Input

First line of input consists of a single integer containing the number of test cases T (equal to around 20), each of the following T lines contain two integers N and k where N is the size of the matrix and k is the exponent.
$1 \leq \mathrm{N} \leq 1000000$
$1 \leq k \leq 10^{9}$

Output

One line corresponding to each test case containing the determinant modulo 1000003 for the corresponding test case.

Example

Input:
3
42
24
43

Output:

288
15
10192
Note: You may want to solve DETER first, in case you havent already solved it.

