Digital Root Counter

The digital root of a number x is calculated by summing up all digits x, then adding all digits of the sum and so on, until we are left with only a single digit.

For example, if $x=987654$, then its digital root $d(x)=9+8+7+6+5+4=39$.
Now we sum up digits of $39 . d(39)=3+9=12$.
Now we sum up digits of $12 . d(12)=1+2=3$.
Thus, $\mathrm{d}(987654)=3$.

Input

The first line gives the number of test cases $T(T<=100)$.
Each of the next T test cases gives the value of $\mathrm{N}(\mathrm{N}<=50,000)$.

Output

For each test case, print 10 integers, each separated by a space, indicating number of digital roots in the range of 1 to N that are equal to $\mathrm{i}(1<=\mathrm{i}<=9)$. Seperate each test case with a new line.

Example
Input:
2
12
40

Output:

Explanation:

For the first case, there are 2 numbers in the range of 1 to 12 that have digital root equal to 1 (1 and 10), 2 numbers that have digital root equal to 2 (2 and 11) and so on.

