Digit Shifts

You will be given a non-negative integer \mathbf{X}. You need to perform \mathbf{Q} queries on that integer. Each query will consist of a single decimal digit D. After every query, you need to move all occurrences of digit \mathbf{D} in the integer to the end, while keeping the relative position of every other digit intact.

For example, suppose $\mathbf{X}=\mathbf{1 2 3 1 2 3}$, and suppose $\mathbf{Q}=3$.

1. For the first query, $\mathbf{D = 1}$, then after the digits are shifted $\mathbf{X}=\mathbf{2 3 2 3 1 1}$.
2. For the second query, $\mathbf{D}=\mathbf{2}$, then after the digits are shifted $\mathbf{X}=\mathbf{3 3 1 1 2 2}$.
3. For the third query, $\mathrm{D}=\mathbf{3}$, then after the digits are shifted $\mathrm{X}=\mathbf{1 1 2 2 3 3}$.

After every query, you need to output the value of the integer \mathbf{X}. Since it can be really large,
 leading zeros, then the leading zeros should be discarded. Therefore, if $\mathbf{X}=\mathbf{2 0 2 2}$ and if $\mathbf{D}=\mathbf{2}$, then after the query, \mathbf{X} will become 222.

Input

The first line will contain a single integer $\mathbf{T}(\mathbf{1} \mathbf{T} \leq \mathbf{2 0})$. Each starts with a single line, which will contain the integer X. Then, in the next line there is a single integer $Q\left(1 \leq Q \leq 10^{5}\right)$, denoting the number of queries. Each of the next \mathbf{Q} lines denotes a query, containing a decimal digit \mathbf{D} ($\mathbf{0} \leq \mathbf{D}$ ≤ 9). You can safely assume that \mathbf{X} won't contain leading zeros initially and that \mathbf{X} will never have more than 10^{5} digits.

Output

For each test case, first print the case number in a single line like "Case V:". Then for each query, output the value of \mathbf{X} modulo 1000000007. Refer to the sample I/O for more clarity.

Sample Input

1
123123
3
1
2
3

Sample Output

Case 1:
232311

