Dinostratus Matrices

Let's call a matrix $A[3 \times 3]$ Dinostratus if all its nine elements are different positive integer numbers and each its element $a_{i, j}$ (where $1 \leq i, j \leq 3$) is a multiple of its neighbors $a_{i-1, j}, a_{i-1, j-1}$ and $a_{i, j-1}$ (if they exist). In other words the following conditions hold:

- $a_{i, j}=X \cdot a_{i-1, j}$ for some positive integer X (if $i \geq 2$)
- $a_{i, j}=Y \cdot a_{i, j-1}$ for some positive integer Y (if $j \geq 2$)
- $a_{i, j}=Z \cdot a_{i-1, j-1}$ for some positive integer Z (if $\left.i, j \geq 2\right)$

For example the matrices

1	3	9
2	6	18
4	12	36

21 \& 126 \& 4158

147 \& 882 \& 29106

\hline\end{array}\right|\)| 10 | 100 | 4000 |
| ---: | ---: | ---: |
| 50 | 1000 | 20000 |
| 10000 | 100000 | 1000000 |

are Dinostratus. And the following matrices are not:

1	3	9
2	6	18
4	12	54

1	2	4
2	4	8
4	8	16

36	12	4
18	6	2
9	3	1

Let's define the element $a_{3,3}$ of a Dinostratus matrix $A[3 \times 3]$ as a base number. Given a base number, find out how many different Dinostratus matices exist. Two matrices A and B are different if there are such indexes i, j that $a_{i, j} \neq b_{i, j}$.

Input

Input file consists of several test cases. Input file starts with a line containing an integer T ($T \leq$ 500), which is the number of test cases. The next T lines constain one base number $N(1 \leq N \leq$ 1000000).

Output

For each test case output a single line containing the number of different Dinostratus matrices corresponding to the base number. It is guaranteed that the answer is less than 2^{63}.

Example

Input:

Output:

0
0
2
2382
257110
7475718
106889830

Note

You can try the problem DINONUM first.

