Dinostratus Matrices

Let's call a matrix $A[3 \times 3]$ Dinostratus if all its nine elements are different positive integer numbers and each its element $a_{i,j}$ (where $1 \le i,j \le 3$) is a multiple of its neighbors $a_{i-1,j}$, $a_{i-1,j-1}$ and $a_{i,j-1}$ (if they exist). In other words the following conditions hold:

- $a_{i,j} = X \cdot a_{i-1,j}$ for some positive integer X (if $i \ge 2$)
- $a_{i,j} = Y \cdot a_{i,j-1}$ for some positive integer Y (if $j \ge 2$)
- $a_{i,j} = Z \cdot a_{i-1,j-1}$ for some positive integer Z (if $i,j \ge 2$)

For example the matrices

1		3	9	3	18	198		10	100	4000
2	2	6	18	21	126	4158		50	1000	20000
4	1	12	36	147	882	29106		10000	100000	1000000

are Dinostratus. And the following matrices are not:

1	3	9	$\left \right $	1	2	4		36	12	4
2	6	18		2	4	8		18	6	2
4	12	54		4	8	16		9	3	1

Let's define the element $a_{3,3}$ of a Dinostratus matrix $A[3 \times 3]$ as a **base number**. Given a base number, find out how many different Dinostratus matices exist. Two matrices A and B are different if there are such indexes *i*, *j* that $a_{i,j} \neq b_{i,j}$.

Input

Input file consists of several test cases. Input file starts with a line containing an integer T ($T \le 500$), which is the number of test cases. The next T lines constain one base number N ($1 \le N \le 1000000$).

Output

For each test case output a single line containing the number of different Dinostratus matrices corresponding to the base number. It is guaranteed that the answer is less than 2⁶³.

Example

Input:

7 1

10

Output:

Note

You can try the problem **DINONUM** first.